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We present the generalized multiple shooting method (GMSM) to analyze the dynamics of
elastic mechanisms. The GMSM solves a boundary value problem by treating it as an initial
value problem. Its accuracy depends on the order of space marching schemes rather than
size of discretization. Dynamic equations with joint boundary conditions are derived by
using Hamilton’s principle to be systematically solved by the GMSM. Comparing with
existing solutions and experiments, the GMSM is shown to be efficient yet it captures
deflection precisely. We expect it to serve as a good alternative to existing methods.
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1. Introduction

Due to increasing requirements of compactness and high speed, dynamic analyses of elastic (flexible) mechanisms have
been a subject of interest for simulation and control of modern machinery. Examples include space robot arms and high-
speed robotic manipulators. Unlike nearly rigid body mechanisms where deformation is very small and does not affect
mechanism behavior, the deformation of an elastic mechanism has great influence on its dynamics. Whether this type of
deformation is intentionally designed [1–3] or unavoidable [4,5], the elastic part usually consists of slender, beam-like links.
For this reason, classical beam dynamic models (Euler–Bernoulli or Timoshenko beam models) are usually applied. The mod-
els are satisfactory provided that a link undergoes a small deflection such that the assumption of a linear strain–displace-
ment relation holds. However, for mechanisms involving highly elastic links [1–3], the models are unable to account for
the effects of large deflection on the link motion. In order to predict more accurately the deflected shape during transient,
there is a need for a model that captures the deflection of a highly elastic link.

With recent developments of finite element methods (FE), several types of FE formulations have been developed to ana-
lyze links undergoing large deflection and overall rotation. These formulations are broadly categorized by the choice of
frames where link deformation and forces are described [6]. The floating frame formulation is based on defining deformation
and forces relative to a floating frame which follows the rigid body motion of the link (for example, see Refs. [7,8]). This for-
mulation makes use of linear FE theories since reliable FE packages are widely available. Although shear deformation can be
further included, the link deflection is assumed to be small in order for the linear elasticity theory to hold. The co-rotational
frame formulation defines deformation in a co-rotational frame and forces in the inertia frame. One of its original works was
. All rights reserved.
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presented by Rankin and Brogan [9] and has been applied to finite element software such as ANSYS�. It has been used to
analyze many structural problems with large rotations. This formulation is independent of the element formulations used.
Both the element and its nodes are attached to their own co-rotational frames. These frames are used to subtract the rigid
body motion from the global displacement field to obtain the deformation of the element. Hsiao and Jang [10] extended the
co-rotational formulation to analyze flexible planar linkages using a linear beam theory. Behdinan et al. [11] used the for-
mulation to study planar beams undergoing large deflections. The global frame formulation defines both deformation and
forces in the global frame. Simo and Vu-Quoc [12,13] were among the first to adopt this formulation. Later, Shabana [14]
proposed the absolute nodal coordinate formulation and it has been an attracting method in recent years. This formulation
has been extended to solve three-dimensional beam problems [15] and plate problems [16]. Compared with the floating
frame formulation, the co-rotational and global frame formulations can handle links undergoing large deflection with large
overall motion. However, Campanelli et al. [17] pointed out several restrictions of the co-rotational formulation for large
deflection analysis. Specifically, the local rotation of end sections has to be less than 30� and small load steps have to be used.
Other comparisons between the co-rotational formulation and the absolute nodal coordinate formulation are found in Ref.
[17]. When modeling a mechanism with mixed elastic and rigid links, both co-rotational and global frame formulations treat
rigid links in the same way as elastic links that require finite element meshes. They do not take advantages of rigid body
properties and thus are computationally more costly than the floating frame formulation.

This paper proposes an alternative method based on the generalized multiple shooting method (GMSM) to analyze the
dynamics of an elastic mechanism. Unlike the above finite element based methods, a shooting method solves a boundary
value problem by treating it as an initial value problem. The generalized shooting method was introduced by Lan and Lee
[18] to analyze large-deflected compliant mechanisms. This numerical method offers a simple formulation with higher order
accuracy. This method was later extended as the generalized multiple shooting method to serve as the basis for shape design
of compliant mechanisms [19]. While the GMSM has been demonstrated for static analysis, this paper builds upon Refs.
[18,19] to explore the capability of analyzing dynamics of elastic mechanisms. The term elastic mechanism generally refers
to a mechanism that consists of elastic links, where both revolute and clamped joints are included. A compliant mechanism
can be regarded as its special case that mainly consists of clamped joints. Specifically, this paper begins by formulation of the
GMSM. This is followed by a set of distributed-parameter governing equations to predict the motion of an elastic link. The
equations precisely describe the kinematics of a transiently deformed link due to bending and axial deformation. For appli-
cations of an elastic mechanism, systematic procedures to derive joint boundary conditions are established. The Newmark
scheme is then applied to discretize the dynamic equations so they can be further solved by the GMSM. Finally, comparisons
with existing methods and experiments are given for verification.
2. Generalized multiple shooting method (GMSM)

Consider an ordinary differential equation (ODE) that governs the deflection of a link (for example, Euler–Bernoulli or
Timoshenko beam equations). The ODE is recast as a set of normalized, first-order ODE of the following form:
q0 ¼ fðu;qÞ ð1aÞ
where q ¼ ½ q1 q2 � � � qn �
T is a column of n variable functions, 0 6 u 6 1 is an independent variable, and q0 = dq/du. Next

we consider an elastic mechanism that consists of ‘ links. Each link is governed by one set of Eq. (1a). We stack these equa-
tions as follows:
q01
..
.

q0i
..
.

q0‘

2
666666664

3
777777775
¼

f1ðu;q1Þ
..
.

f iðu;qiÞ
..
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f‘ðu;q‘Þ

2
666666664

3
777777775

ð1bÞ
where subscript i denotes link number. The subscript i is also added to function f since each link may be generally governed
by a different type of ODE. Since the links are connected together by various kinds of joints, these ‘ sets of first-order ODE’s
are coupled and must be simultaneously solved. To solve Eq. (1b) by the GMSM, we first divide the interval of integration
[0 1] equally into N subintervals with N + 1 nodes
0 ¼ u0 < u1 < � � � < uj < � � � < uN�1 < uN ¼ 1; j ¼ 0—N
The symbol uj denotes the normalized arc length of the jth node. By doing this, Eq. (1b) is equally divided into N sub-ODE’s.
The form of each sub-ODE is identical to its original Eq. (1b) except that the span is now u 2 ½uj ujþ1 �. Same as Eq. (1b), each
sub-ODE requires a set of initial values in order to integrate the ODE in that subinterval. We denote the initial values of the
jth sub-ODE as
qðujÞ ¼ ½qT
1ðujÞ . . . qT

i ðujÞ � � � qT
‘ ðujÞ �T ¼ ½ lT

1j . . . lT
ij � � � lT

‘j �
T ¼ lj; j ¼ 0—N � 1
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where lj is an ‘n � 1 vector. Since these initial values are not known in advance, we treat them as unknowns. For N sub-
ODE’s we have ‘n � N initial values
l ¼ ½ lT
0 . . . lT

j � � � lT
N�1 �

T

Hence there are totally ‘nN unknowns. These unknowns, depending on their physical model, are usually angles of rotation,
displacements, or internal forces that characterize the geometry of a link. We then provide estimates to these unknowns in
order to integrate each sub-ODE of Eq. (1b). After integration, the terminal values of the sub-ODE’s must satisfy the corre-
sponding equations as follows.

(i) ‘n terminal constraint equations that couple each set of Eq. (1b) together:
gðqð0Þ;qð1ÞÞ ¼ 0 ð2aÞ

Eq. (2a) results from the joint boundary conditions that connect all the links together. Since a link is connected at its
two ends, these equations are generally functions of q(0) and q(1). The number of terminal constraint equations must
be equal to ‘n in order to be well-posed. An explicit formulation of Eq. (2a) will be provided in Section 3.2.
(ii) (N � 1)‘n continuity equations that piece every sub-ODE of Eq. (1b) together:
ljþ1 ¼ qðujþ1; ljÞ; j ¼ 0—N � 2 ð2bÞ

The vector lj after the semicolon indicates that the value qðujþ1Þ is a function of the initial value lj of the jth sub-ODE.
Since each sub-ODE is part of a continuous ODE (Eq. (1b)), Eq. (2b) means that the values at the end of each sub-ODE
must be equal to the initial values of the next sub-ODE. Note that for a more general formulation of the GMSM [19],
additional unknown parameters and physical constraint equations are required.
We then begin an iterative process to find the solutions to the initial values so that after integration, the constraint and
continuity equations in Eq. (2) are satisfied. Since the process is very similar to solving a system of nonlinear algebraic equa-
tions, methods such as Newton–Raphson or Quasi-Newton can be applied. For convenience of programming, the Jacobian
matrix of Eq. (2) is approximated numerically. To further reduce the cost of Jacobian matrix computation, we adopt Qua-
si-Newton method that requires only one evaluation of the Jacobian matrix. On the other hand, the accuracy of the GMSM
depends on the order of integration scheme used. For example, the result of using a fourth-order Runge–Kutta scheme is
more accurate than that of a third-order scheme. However, the difference of computational cost between the third and
fourth-order schemes is marginal (see Ref. [18] for detailed comparison). Hence a fourth-order scheme is usually applied.

For N = 1, Eq. (2b) vanishes and the GMSM reduces to generalized (single) shooting method (GSM). When integrating
ODE’s with complicated boundary conditions, solution profile due to poor estimates of initial values tends to go unbounded
before the end of integration. To be able to iteratively correct the poor estimates, a shorter span of integration is necessary.
Hence more than one subinterval (N > 1) are usually required to ensure convergence of the iterative process.

3. Dynamic model of a highly elastic mechanism

To analyze the motion of an elastic mechanism, we first derive a set of distributed-parameter equations for an elastic link.
Boundary conditions at the joints of a mechanism are then formulated. Various types of joints are considered to include
mechanisms of general configurations. The equations with boundary conditions are to be recast so they can be readily solved
by using the GMSM. Advantages of the proposed model are also highlighted.

3.1. Dynamic equations governing an elastic link

Fig. 1 shows an initially straight link of length L in the global x–y frame. A non-dimensional arc length u 2 [0 1] is defined
along the neutral axis of the link. To depict its deflected shape, we define w as the link deflection angle induced by bending.
Deflected 
position

Un-deflected 
position

ψ

x

y

u L

(x, y)

Fig. 1. Schematic of an elastic link.
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The coordinate of a point on the neutral axis of the link is described by (x, y). The variables x, y, and w are functions of u and
time t. They are expressed explicitly as x(u, t), y(u, t), and w(u, t).

The total kinetic energy of the link is expressed as
K ¼ L
2

Z 1

0
½Iq _w2 þ Aqð _x2 þ _y2Þ�du ð3Þ
where Iq is the mass moment of inertia per unit length, Aq is the mass per unit length, and a dot over a variable denotes the
time derivative of that variable. Similarly, the potential (strain) energy of the link can be expressed as
V ¼ 1
2L

Z 1

0
½EIðw0Þ2 þ EAðe0Þ2�du ð4Þ
where I is the second moment of area, A is the cross section area, and E is the modulus of elasticity. The axial displacement e
is measured along the neutral axis. A prime over a variable denotes the derivative with respect to the non-dimensional arc
length u. The terms inside Eq. (4) represent the strain energy due to bending and axial deformations, respectively. Shear
deformation is ignored here for clarity but it can be included in a similar fashion.

In practical applications, non-conservative forces applied on the link include external or internal dissipative forces. As an
illustration, we adopt a linear viscous damping model so that at every point of the link, the point undergoes a drag force that
is proportional in magnitude to the velocity of that point. The virtual work due to the drag force is formulated as
dWnc ¼ �L
Z 1

0
ðr1 _xdxþ r2 _ydyÞdu ð5Þ
where r1 and r2 are the viscous damping coefficients in the x and y directions. In addition, the variables x, y, and w that
appear in Eqs. (3)–(5) are not independent. They are related by the following two geometric constraints
g1 ¼ x0 � ðLþ e0Þ cos w ¼ 0; g2 ¼ y0 � ðLþ e0Þ sin w ¼ 0 ð6a;bÞ
With Eqs. (3)–(5), (6a), (b), the equations of motion of the elastic link can be derived by using Hamilton’s principle, where the
following variational form holds
Z t2

t1

dK � dV þ dWnc �
Z 1

0
ðhdg1 þ vdg2Þdu

� �
dt ¼ 0 ð7Þ
The integration limits t1 and t2 are two arbitrary instants of time. The introduced variables h and v are the Lagrange multi-
pliers for Eqs. (6a,b), respectively. With them, we have enough (six) variables for the variational procedure. The resulting
partial differential equations that govern the dynamics of a large-deflected link are written as follows
EI

L2 w00 � Iq €wþ v e0

L
þ 1

� �
cos w� h

e0

L
þ 1

� �
sin w ¼ 0 ð8aÞ

LðAq€xþ r1 _xÞ � h0 ¼ 0; LðAq€yþ r2 _yÞ � v 0 ¼ 0 ð8b;cÞ
x0 � ðLþ e0Þ cos w ¼ 0; y0 � ðLþ e0Þ sin w ¼ 0 ð8d;eÞ
EAe00 � Lðh cos wþ v sin wÞ0 ¼ 0 ð8fÞ
Eq. (8a) is the moment balance equation. The rotational inertia term Iq €w is often very small (due to Iq) and may be neglected
in practical applications. Eqs. (8b,c) are the results of applying Newton’s second law to each infinitesimal segment directly.
From observing Eqs. (8a,b,c), the Lagrange multipliers h and v turn out to be the internal forces acting on an infinitesimal
segment in the positive x and y directions. To further include the effect of gravity in practical applications, the term �LAqg
should be added to Eq. (8c) for a gravitational force, for example, in the positive y direction. Eqs. (8d,e) are the same geomet-
ric constraints as Eqs. (6a,b). They must be solved simultaneously with the rest of Eq. (8). Compared with linear beam the-
ories that are based on the assumption of small deflection, Eqs. (8d,e) provide exact kinematic description for the neutral axis
of a deflected beam even for very large transient deflections. Eq. (8f) is the force balance equation in the axial direction. For
many applications the axial displacements are small and may be ignored for convenience.

For an elastic mechanism that consists of multiple links, each link is governed by one set of Eq. (8). The displacement
functions of all links are described expediently in the same x–y frame (or global frame). Without unnecessary intermediate
or local frames, coordinate transformations can be avoided. This is in contrast to the floating frame or co-rotational frame
formulations that are based on a frame attached to each link. Since deformation and internal forces are described in the glo-
bal frame, the model provided here may be considered as a type of the global frame formulation.

3.2. Boundary conditions at the joints

Eq. (8) that governs the dynamics of a link is subjected to various types of boundary conditions. For an elastic mechanism,
those conditions appear at joints where the ends of links are connected. Mathematically, the boundary conditions can be
expressed as terminal constraint (algebraic) equations that must be valid for all time. Without loss of generality, exclusive
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Fig. 2. Schematic of a rigid plate that connects three elastic links.
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revolute and clamped joints are investigated. We first consider a movable rigid plate that connects three links shown in
Fig. 2. A free body diagram of the plate yields force balance equations as follows
h1ð1Þ � h2ð0Þ þ h3ð1Þ ¼ 0; v1ð1Þ � v2ð0Þ þ v3ð1Þ ¼ 0 ð9aÞ
Whether the sign of the force is positive or negative depends on how the direction of the non-dimensional arc length u is
(arbitrarily) defined for each link. For example, Link 1 ends at J1 with u = 1 and hence h1(1) has a positive sign. Link 2 starts
at J2 with u = 0 and hence h2(0) has a negative sign. For each of the three links, external forces also produce axial displace-
ments. Since e is defined along the positive direction of non-dimensional arc length u, its initial value is zero and increases
with increasing u. At u = 1, the internal axial force has to balance with external forces. Thus the boundary conditions of axial
displacements depend on the value of u at the joints
eð0Þ ¼ 0 or EAe0ð1Þ � Lðh cos wþ v sin wÞju¼1 ¼ 0 ð9bÞ
In addition to forces, the displacements of the three joints have to match at the rigid plate
x2ð0Þ � x1ð1Þ ¼ d1 cos a; y2ð0Þ � y1ð1Þ ¼ d1 sin a
x3ð1Þ � x1ð1Þ ¼ d3 cosðaþ bÞ; y3ð1Þ � y1ð1Þ ¼ d3 sinðaþ bÞ

ð9cÞ
The parameters d1–d3 are the distances between the centers of joints J1–J3. For clamped joints, the angle a = w1(1) + constant.
For revolute joints, the angle a is solved by the following moment balance equation at J1
½v2ð0Þd1 cos a� h2ð0Þd1 sin a� � ½v3ð1Þd3 cosðaþ bÞ � h3ð1Þd3 sinðaþ bÞ� ¼ 0
Depending on whether they are clamped or revolute joints, the corresponding moment/angle conditions are
ðEI1=L1Þw01ð1Þ � ðEI2=L2Þw02ð0Þ þ ðEI3=L3Þw03ð1Þ � ½v2ð0Þd1 cos a� h2ð0Þd1 sin a� þ ½v3ð1Þd3 cosðaþ bÞ
� h3ð1Þd3 sinðaþ bÞ� ¼ 0 ð9dÞ
Clamped:
w2ð0Þ � w1ð1Þ ¼ const:; w3ð1Þ � w1ð1Þ ¼ const: ð9eÞ
Revolute:
w01ð1Þ ¼ 0; w02ð0Þ ¼ 0; w03ð1Þ ¼ 0 ð9fÞ
Eq. (9d) is the moment balance equation at J1, where the sign convention is the same as that in Eq. (9a). Eq. (9e) states that
the angle differences from Link 1 to Link 2 and Link 3 are the same before and after deformation. Eq. (9f) states that a rev-
olute joint cannot resist moments and thus the derivative of w has to be zero for all the three links. Observing Eqs. (9d)–(9f)
both clamped and revolute joints include three constraint equations. Regardless of clamped or revolute, the rigid plate in
Fig. 2 has a total of 12 constraint equations. From above we may deduce that a general movable rigid plate that connects
m links should have 4m terminal constraint equations. The extensions of Eq. (9) to more than (or less than) three links
are rather straightforward. In an elastic mechanism, we can treat a certain (massless) link as a rigid plate when its flexural
rigidity is much larger than others. In this way, the solution procedure is more computationally efficient since the deforma-
tion of the rigid plate does not have to be accounted for. In the extreme case when the size of a plate shown in Fig. 2 is very
small, the three joints coincide as shown in Fig. 3. Eq. (9) then reduces to a simpler version by nullifying the terms involving
the distances d1–d3.

Fig. 4 illustrates three other joint types. The ground-fixed joint in Fig. 4a may be subject to either a torque input M or
angle input u. The free joint in Fig. 4b may be subject to external force Fx or Fy. Fig. 4c shows a guided joint with a massless
slider block. The corresponding moment/angle and force/displacement boundary conditions are listed in Table 1. Each joint
in Table 1 has four constraint equations regardless of its type.
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When Eq. (8) is recast into the form of Eq. (1a) with n = 8, Eq. (9) and the constraint equations in Table 1 serve as the
terminal constraint equations in Eq. (2a). For the differential equations to be well-posed, the number of terminal constraint
equations has to be equal to 8‘ for an elastic mechanism with ‘ links. The formulation of continuity equations (Eq. (2b)) will
be given in Section 4.

4. Temporal approximations

Eq. (8) with terminal constraint equations formulated in Section 3.2 is a system of nonlinear hyperbolic equations. We
adopt, but are not limited to, the Newmark family of integration schemes to temporally discretize Eq. (8) so that the spatial
domain can be further solved by using the GMSM. The Newmark scheme is an implicit method that finds the current dis-
placement using equations of motion at current time. Consider the x position of a particular point on a link. Let the position
xk, its velocity _xk, and acceleration €xk denote the approximate solution to xðtk;uÞ, _xðtk;uÞ, and €xðtk; uÞ at time instant tk, respec-
tively. When at time tk the solutions of xk, _xk, and €xk have been obtained, the Newmark scheme approximates the velocity and
acceleration at the next time instant tk+1 by using the following formulas:
€xkþ1 ¼ ð2=a2Dt2Þðxkþ1 � xkÞ � ð2=a2DtÞ _xk � ð1=a2 � 1Þ€xk ð10aÞ
_xkþ1 ¼ _xk þ ð1� a1ÞDt€xk þ a1Dt€xkþ1 ð10bÞ
where Dt = tk+1 � tk denotes the time step size and (a1, a2) are Newmark parameters that determine the stability and accu-
racy of the scheme. By applying Eq. (10a) to the terms involving time derivatives, Eq. (8) can be written as a system of time-
independent ordinary differential equations involving unknown functions wkþ1, hk+1, vkþ1, xkþ1, ykþ1, and ek+1 to be solved. To
apply the GMSM, we further recast the equations into a set of first-order ODE as follows. For clarity of expression we neglect
the rotational inertia term in Eq. (8a) and damping terms in Eqs. (8b,c).
q0 ¼

wkþ1

ðw0Þkþ1

hkþ1

vkþ1

xkþ1

ykþ1

ekþ1

ðe0Þkþ1

2
666666666666664

3
777777777777775

0

¼

ðw0Þkþ1

�L=EI½ðe0Þkþ1 þ L�ðvkþ1 cos wkþ1 � hkþ1 sin wkþ1Þ
LAq½ð2=a2Dt2Þðxkþ1 � xkÞ � ð2=a2DtÞ _xk � ð1=a2 � 1Þ€xk�
LAq½ð2=a2Dt2Þðykþ1 � ykÞ � ð2=a2DtÞ _yk � ð1=a2 � 1Þ€yk�

½Lþ ðe0Þkþ1� cos wkþ1

½Lþ ðe0Þkþ1� sin wkþ1

ðe0Þkþ1

L=EAðhkþ1 cos wkþ1 þ vkþ1 sin wkþ1Þ0

2
6666666666666664

3
7777777777777775

ð11Þ
Eq. (11) is then solved by the GMSM presented in Section 2 to obtain the solution at time step k + 1. Specifically, the spa-
tial domain is divided into N subintervals so that the unknown initial values of each sub-ODE are expressed as
lkþ1
j ¼ ½wkþ1 ðw0Þkþ1 hkþ1 vkþ1 xkþ1 ykþ1 ekþ1 ðe0Þkþ1 �T ju¼uj

; j ¼ 0—N � 1



Table 1
Constraint equations at various joints.

Moment and angle Force and displacement

Fixed w0ð0Þ þ ðL=EIÞM ¼ 0 moment input
wð0Þ ¼ u angle input
wð0Þ ¼ constant clamped

8<
:

x(0) = 0; y(0) = 0; e(0) = 0

Free w0(1) = 0 h(1) � Fx = 0; v(1) � Fy = 0; e0(1) = 0
Guided w0(0) = 0 h(0) = 0; y(0) = 0; e(0) = 0
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For a mechanism with ‘ links, there are 8N‘ unknown initial values. The matching terminal constraint equations are for-
mulated in Section 3.2. For cases of multiple shooting (N > 1), continuity equations are further required to piece each sub-
ODE together
lkþ1
jþ1 ¼ qðujþ1; lkþ1

j Þ; j ¼ 0—N � 2
After solving time step k + 1, the approximate functions ð _wkþ1; €wkþ1Þ; ð _xkþ1; €xkþ1Þ, and ð _ykþ1; €ykþ1Þ are computed by using Eq.
(10). They are plugged into Eq. (11) again to solve for the next time step k + 2. Although we need to estimate the initial values
l for each time step, we may use the solved initial values from the previous time step as estimates to the initial values of the
current step. Hence we only need to offer estimates for the very first time step.

Note that to begin the iterative calculation of Eq. (11), information of the initial conditions ðw0; _w0; €w0Þ; ðx0; _x0; €x0Þ and
ðy0; _y0; €y0Þ is required. The initial positions and velocities will be given and the initial accelerations can be obtained by assum-
ing zero applied force at t = 0:
€w0 ¼ ðEI=L2IqÞðw00Þ0; €x0 ¼ 0; €y0 ¼ 0 ð12Þ
The first initial acceleration in Eq. (12) is not required if the rotational inertia term in Eq. (8a) is neglected.

5. Illustrative examples

We verify our proposed method by four examples. Example 1 demonstrates the GMSM for analyzing a shear deformable
beam. Example 2 simulates the motion of a high-speed rotating link and compares the results of using the GMSM with those
previously published. Example 3 studies the dynamics of an elastic slider crank mechanism using two different types of
material. Finally, a four-bar mechanism is presented in Example 4 to validate the GMSM experimentally. Except for Example
1, the other three examples use the link dynamic equations (Eqs. (8)–(9)) established in Section 3. We use intervals N = 20,
time step size Dt = 0.005 s, and Newmark parameters (a1, a2) = (0.5, 0.5) for these three examples. A fourth-order Runge–
Kutta method with step size d = 0.005 is applied as the space marching scheme. Note that for closed-loop mechanisms
the link axial deformation is very small and can be neglected to reduce computation complexity. By doing so, the revised
governing equations remove Eq. (8f), Eq. (9b), and the terms involving e and e0 in Eqs. (8a)–(8e) and Table 1. The recast
state-space form has n = 6 variable functions with 6‘ terminal constraint equations and 6‘(N � 1)continuity equations.
Example 2 and Examples 3–4 illustrate the analyses with and without considering axial deformation, respectively.

Solving these examples requires four steps: (i) recast the ODE in a state-space form as Eq. (1), (ii) formulate unknown
initial values l and terminal constraint equations g, (iii) temporally discretize the ODE and then divide it into sub-ODE’s
to obtain continuity equations, and (iv) provide first estimates of l to iteratively integrate the ODE until the terminal con-
straint equations and continuity equations are satisfied. Due to the systematic procedure, the only difference among these
examples is step (ii), which will be detailed in each example.

5.1. Example 1: Effect of shear deformation

The GMSM itself is generic and can be used to solve various boundary value equations. We apply this method to solve
Timoshenko’s beam equations, which take into account shear deformation in addition to flexural deformation. Timoshenko’s
beam equations (linear) are
d
dx

jGA
dw
dx
� w

� �� �
þ f ðxÞ ¼ 0; EI

d2w

dx2 þ jGA
dw
dx
� w

� �
¼ 0 ð13aÞ
where x is the axial coordinate of the beam, w is the transverse deflection of the beam, f(x) is the transversely distributed load
function, G is the shear modulus, and j is the shear correction factor. When a beam is clamped at x = 0 and free at x = L, the
known terminal constraint equations are
w ¼ 0 and w ¼ 0 at x ¼ 0; dw=dx ¼ 0 and jGA
dw
dx
� w

� �
¼ F at x ¼ L ð13bÞ
where F is the concentrated load applied at x = L. For constant f, the exact solutions to Eq. (13) are
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w ¼ 0:5fL2 þ FL
2EI

x2 � F þ fL
6EI

x3 þ f
24EI

x4 þ ðF þ fLÞx� 0:5fx2

jGA
; w ¼ 0:5fL2 þ FL

EI
x� F þ fL

2EI
x2 þ f

6EI
x3 ð14Þ
To solve Eq. (13) by using the GMSM with N = 1, we introduce new variables q1 = w, q2 = dw/dx, q3 = w, and q4 = dw/dx so they
can be expressed as the following set of first-order ODE
½ q01 q02 q03 q04 �
T ¼ ½ q2 q4 � f

kGA q4
jGA

EI ðq3 � q2Þ �
T

The unknown initial values and terminal constraint equations are
l ¼ ½ q1ð0Þ q2ð0Þ q3ð0Þ q4ð0Þ �
T and g ¼ ½ q1ð0Þ q3ð0Þ q4ðLÞ jGAðq2ðLÞ � q3ðLÞÞ � F �T ¼ 0:
Hence the initial values can be solved by iteratively satisfying the terminal constraint equations. For comparison, we solve
Eq. (13) again by using the finite element methods. However, care must be taken for the element-wise interpolation of vari-
ables w and w in order not to yield trivial solutions (w = w = 0), which is termed as shear-locking [20]. Reduced integration
elements (RIE) and consistent interpolation elements (CIE) were developed to solve Eq. (13) without exhibiting shear-lock-
ing. As an illustration, we solve Eq. (13) by using RIE (linear interpolation). The transverse deflection w’s computed by using
GMSM (which is naturally free of shear-locking) and RIE are then compared in Fig. 5 with exact solutions in Eq. (14). A beam
with square cross section is used with material properties provided in Fig. 5. RIE uses 10, 20, and 50 elements while the
GMSM uses ode23 and ode45 solver in Matlab�. The solver ode23 refers to Runge–Kutta formulas of a second and third-or-
der pair while ode45 refers to a fourth and fifth-order pair. It can be seen that RIE requires at least 50 elements to achieve the
order of accuracy of the results of GMSM using ode23. The result of using ode45 is almost the same as the exact solution.

5.2. Example 2: A high-speed rotating link

Applications of a high-speed rotating link can be found in helicopter blades, flexible robotic manipulators, and turbine
blades. As mentioned in Ref. [6], the floating frame formulation is restricted to simulate motion of links with moderate angu-
lar velocities. For high-speed rotating links the centrifugal force stiffens the link (known as centrifugal stiffening effect or
geometric stiffening effect). It has been shown that the floating frame formulation fails to capture this effect and thus causes
numerical instability. The instability is due to its assumption of linear strain–displacement relations, which neglects the cou-
pled longitudinal and transverse displacements caused by bending deformation [21]. Methods [22,23] have been proposed
for the floating frame formulation to solve this problem. Since the coupled displacements are described by Eq. (8), we
demonstrate using this example that the GMSM can naturally simulate a high-speed rotating link without further modifica-
tions. Consider a straight link attached to a hub shown in Fig. 6. The unknown initial values are
lj ¼ ½w w0 h v x y e e0 �T ju¼uj

ðj ¼ 0—N � 1Þ with terminal constraint equations as follows
At J1 : g ¼ ½wð0Þ �u; xð0Þ; yð0Þ; eð0Þ;
At J2 : w0ð1Þ; hð1Þ; vð1Þ; e0ð1Þ� ¼ 0

ð15Þ
where the angle input u at the hub (J1) is given as follows
uðtÞ ¼ xs=Tsft2=2þ ðTs=2pÞ2½cosð2pt=TsÞ � 1�g t < Ts

xsðt � Ts=2Þ t P Ts

(

Two benchmark cases were previously performed [13,22–24] to examine whether instability occurs when simulating a high-
speed rotating link. We use the GMSM to simulate the two cases for verification. Table 2 shows the parameters for the two
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Fig. 6. A high-speed rotating link.

Table 2
Simulation parameters for the spinning link.

Simulation Parameters Case 1 [22,24] Case 2 [13,23]

Length of link L 8 m 10 m
Density q 2766.67 kg/m3 3000 kg/m3

Moment of inertia I 8.214 � 10�9 m4 1.997 � 10�7 m4

Cross-sectional area A 7.299 � 10�5 m2 4 � 10�4 m2

Young’s Modulus E 6.895 � 1010 Pa 7 � 1010 Pa
(Ts, xs) (15 s, 2 rad/s) (15 s, 6 rad/s)
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cases. For Case 1, Fig. 7 shows the tip displacement in the local x direction. As the link rotates very fast, its axial displacement
due to centrifugal forces becomes obvious. After t P Ts, the tip experiences a steady-state axial extension 2.7385 � 10�5 m.
Fig. 8 shows the tip deflection in the local y direction. When the long beam starts with a very high acceleration, it will deflect
and the maximal tip deflection is y = �0.280 m at t = 7.0 s (agrees with Ref. [22] where y = �0.282 m). Table 3 compares the
computed tip steady-state axial extension of using the GMSM with those published [13,24]. Both cases are considered and
matched, with maximal difference 0.03%.

5.3. Example 3: Dynamics of an elastic slider crank mechanism

Fig. 9 shows a slider crank mechanism driven by an input torque M at revolute joint J1. Link 1 (crankshaft) connects to
Link 2 (connecting rod) through revolute joint J2. Link 2 is tied to another massless slider through revolute joint J3. The slider
moves smoothly in the x direction, which resembles the configuration in Fig. 4c. The arrows inside the links indicate positive
directions of u. The unknown initial values of the mechanism are lij ¼ ½wi w0i hi v i xi yi �

T ju¼uj
ði ¼ 1—2; j ¼ 0—N � 1Þ

with terminal constraint equations formulated as follows
At J1 : g ¼ ½EI1w
0
1ð0Þ=L1 þM; x1ð0Þ; y1ð0Þ;

At J2 : w01ð1Þ; w02ð1Þ; h1ð1Þ þ h2ð1Þ; v1ð1Þ þ v2ð1Þ; x1ð1Þ � x2ð1Þ; y1ð1Þ � y2ð1Þ;
At J3 : w02ð0Þ; h2ð0Þ; y2ð0Þ� ¼ 0

ð16Þ
where the input torque M is given as follows and simulation parameters in Table 4
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Fig. 7. Displacement of the tip in the local x direction (Case 1).
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Table 3
Steady-state axial extension of the tip.

Case 1 Case 2

Previously published results 2.7393 � 10�5 m [24] 5.14 � 10�4 m [13]
Results computed by using the GMSM 2.7385 � 10�5 m 5.14 � 10�4 m

M

y Link 2
Link 1

Slider

xJ1

J2

J3

Fig. 9. Elastic slider crank mechanism.

Table 4
Simulat

Simulat

Length
Momen
Cross s
Initial t
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MðtÞ ¼ 0:01 sin p
1:2 t
� �

0 6 t < 1:2
0 1:2 6 t

(

Under the above geometry and loading conditions, we select two different materials, aluminum (E = 70 GPa, q = 2710 kg/
m3) and rubber (E = 3 MPa, q = 2550 kg/m3), to perform simulation using the GMSM and the co-rotational method (imple-
mented in ANSYS�). In the ANSYS simulation, BEAM4 and COMBIN7 elements are used to model the flexible links and rev-
olute joints, respectively. Fig. 10 shows the simulated slider block displacements using the two methods. Maximal difference
is less than 0.3%. The rubber slider crank mechanism deflects more due to its compliance. The energy profile with respect to
time is compared in Fig. 11. The results obtained by the GMSM and ANSYS show very good agreement. Since there is no input
work after t = 1.2 s, the overall energy (kinetic plus strain energy) remains unchanged. Although the energy profile looks very
much the same in Fig. 11, there is a small oscillation in the results of the co-rotational method, as can be seen in the enlarged
view in Fig. 12. More time steps, larger mesh size, or more significant digits, do not improve the results.
ion parameters for the elastic slider crank

ion Parameters Values

of link (L1, L2) (0.2, 0.4) m
t of inertia (I1, I2) (4.350 � 10�10, 4.350 � 10�10) m4

ection area (A1, A2) (7.225 � 10�5, 7.225 � 10�5) m2

ip location [x1(1), y1(1)] = [0.2, 0] m; [x2(1), y2(1)] = [0.6, 0] m
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Table 5 compares the computation time of using the co-rotational method and the GMSM in a Pentium 4 computer
(3.40GHz CPU with 2GB RAM). For fairness, the time step size and spatial discretization size of both methods are chosen
to be the same. As can be seen, the computation time of using the co-rotational method is more than four times that of
the GMSM. The improvement of computation time may be explained by the following: The accuracy of FE based methods
is usually determined by the mesh size and thus the number of nonlinear equations to be solved. On the other hand, the
accuracy of the GMSM depends on the order of space marching schemes. The number of nonlinear equations to be solved
for the GMSM is determined by subinterval number N. More subintervals mainly improve convergence rather than accuracy.
Hence the number of nonlinear equations to be solved for the GMSM is usually much less than that of FE methods. Since the



Table 5
Comparison of computation time for Example 3.

Aluminum Rubber

Co-rotational method (n = 200, Dt = 0.005 s, ANSYS) 234.08 s 229.25 s
GMSM (d = 0.005, Dt = 0.005 s, MATLAB) 44.61 s 49.16 s
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computation time is primarily determined by the number of nonlinear equations to be solved, the GMSM can as a result be
more efficient.

5.4. Example 4: An elastic four-bar mechanism

To validate the GMSM for analyzing large-deflected mechanisms, we perform an experiment using an elastic four-bar
mechanism. Previously published experiments focused on the overall displacement of a vibrating cantilever [25] or lightly
elastic four-bar mechanisms [26,27]. Experiments on a highly elastic four-bar mechanism, to the best of the author’s knowl-
edge, have not been found in the literature. Fig. 13 shows a schematic and detailed dimensions of a highly elastic four-bar
mechanism. Two aluminum square brackets rigidly connect three spring steel beams at J2 and J3 so they form a rectangle. The
three beams are denoted as Links 1, 2 and 3. The arrows beside the beams indicate positive directions of u. The beam flexural
rigidities are determined from cantilever vibration experiments. The brackets are much thicker than the three beams and
thus are considered rigid. The boundary conditions (Eqs. (9c)–(9e)) at a rigid plate can be applied here to accurately account
for the bracket geometry. For clarity, the negligible mass and geometry of the brackets are not considered. Hence the un-
known initial values are lij ¼ ½wi w0i hi v i xi yi �

T ju¼uj
ði ¼ 1—3; j ¼ 0—N � 1Þ with terminal constraint equations for-

mulated as follows
At J1 : g¼ w1ð0Þ�p=2; x1ð0Þ; y1ð0Þ½

At J2 : w1ð1Þ�w2ð0Þ�
p
2

;
EI1

L1
w01ð1Þ�

EI2

L2
w02ð0Þ; h1ð1Þ�h2ð0Þ; v1ð1Þ�v2ð0Þ; x1ð1Þ�x2ð0Þ; y1ð1Þ�y2ð0Þ;

At J3 : w2ð1Þ�w3ð0Þ�
p
2

;
EI2

L2
w02ð1Þ�

EI3

L3
w03ð0Þ; h2ð1Þ�h3ð0Þ; v2ð1Þ�v3ð0Þ; x2ð1Þ�x3ð0Þ; y2ð1Þ�y3ð0Þ;

At J4 : w3ð1Þþ
p
2

; x3ð1Þ�L2; y3ð1Þ
i
¼0

ð17Þ
To test for large deflection, J3 is given an initially displacement D = 11.0 cm in the positive x direction and then released.
Fig. 14 shows the experiment setup, where a high-speed camera (250 fps, 640 � 480 pixels) is used for motion capture. A
transient deformed position is shown in Fig. 15. The x displacement of midpoint B with respect to time is recorded in
Fig. 16. By comparison, we see that the result of GMSM agrees well with that from the experiment. The differences at the
peaks can be explained by the fact that we ignore actual aerodynamic damping in the GMSM simulation. Since the four-
bar mechanism with aerodynamics damping can be regarded as a very lightly damped system, the difference between
the experiment and the GMSM will not be distinguishable until several periods of vibration. To show the longitudinally
shortened displacement due to bending of Links 1 and 3, we record the y displacement of Point B. This y displacement,
though small compared to the x displacement, increases with increasing transverse deflection of Links 1 and 3. Fig. 17 shows
the agreement of the experiment with the GMSM result. The GMSM is able to predict this displacement because deformation
is described along the neutral axis of a link with aid of Eqs. (8d,e). Other existing models, which may be linear (for example,
Euler–Bernoulli) or nonlinear describing deformation along the original position of a link, are unable to capture displacement
in the y direction. In other words, when simulating using those models, the y displacement of point B would be identically
zero.
1 3

2

2
1 3

2
2

1 3

2

2.05 Nm

4.88 Nm

0.23 kg/m

4.88 kg/m

0.70 m

0.40 m

EI EI

EI

A A

A

L L

L

ρ ρ

ρ

= =

=
= =

=

= =
=

J3
J4

y

x

J1

L2

L1

J2

Fig. 13. Schematic of an elastic four-bar mechanism.



Fig. 15. Transient deformation.
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Fig. 14. Experiment setup.
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6. Conclusions

We present the generalized multiple shooting method (GMSM) for analysing the dynamics of an elastic mechanism.
While the GMSM can be applied to any type (both linear and nonlinear) of differential equations, a set of governing equations
is derived in Section 3 to effectively describe the exact kinematics of a large-deflected beam. We further offer a systematic
formulation to model clamped, revolute, and sliding joints so that the necessary boundary conditions of mechanisms can be
generated. The computational complexity primarily depends on the number of elastic links (‘). In many applications, axial
deformation is ignored and hence the number of terminal constraint equations is 6‘.

Through four illustrative examples, the GMSM has been demonstrated to be a computationally efficient method with
rather convenient formulation. Twenty subintervals (N = 20) are shown to be sufficient for simulating a highly elastic link.
To reduce the computation cost for analyzing relatively stiff links, ten subintervals are satisfactory. For static analysis such as
Example 1, only one or two subintervals are required. Experimental comparisons of using an elastic four-bar mechanism
have also shown that the method can accurately predict the lateral displacement of the coupler caused by large-deflected
motion. This type of displacement, though very small, cannot be ignored when precision motion is required. Since the GMSM
is shown to be generic, its extension to spatial mechanisms is straightforward given three-dimensional beam differential
equations. We expect that the GMSM presented here provides a very good alternative to existing methods for analyzing se-
rial or parallel mechanisms where the effect of link flexibility on their dynamics is a concern.
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